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Inhomogeneous materials with periodic structures are considered. Formulas for calculating mean pa-
rameters that meet the requirements imposed on them are obtained by averaging the equations of a
potential electric field.

It is well known that inhomogeneous materials enjoy very wide application. They increase in number
substantially each year, and simultaneously theoretical and experimental studies of their physical properties
continue. Ultimately these investigations are reduced to determination of the averaged (effective) parameters
of inhomogeneous materials. To solve this problem, one has to calculate physical fields in the components of
the inhomogeneous material with subsequent averaging. Exact calculations of these fields involve great diffi-
culties due to the structure, orientation, and shape of the components of the inhomogeneous media. Therefore,
the problems of determining the effective parameters of inhomogeneous materials, except for rare cases of the
simplest structures, have been solved only approximately [1–9].

The second important problem in the theory of inhomogeneous materials (theory of mixtures) is car-
rying out experimental investigations, which, however, are associated with great difficulties and expenditures.
Therefore, experiments are carried out with one sample of an inhomogeneous material, and the data obtained
are extended to the entire material.

Most important here are theoretical results that must satisfy basic requirements: the equivalence be-
tween the effective medium and the real inhomogeneous material; acquisition of physically correct results
with limiting values of both the coefficient of filling with inclusions and the parameters of the components
of theinhomogeneous material; satisfactory agreement between theoretical results and experimental data [4].

We suggest a method that allows one, by averaging the equations of potential fields, to find the ef-
fective parameters of inhomogeneous materials. It is based on the definition of Lorenz averaging [10] and
also on the theory of averaging of equations of potential fields [11]. The method is applicable to inhomogene-
ous materials with irregular structures for low volume concentrations f2 << 1 and to inhomogeneous materials
with regular structures for 0 ≤ f2 ≤ 1.

In the present work we consider two-component inhomogeneous dielectrics consisting of a matrix
(dispersion) medium and foreign solid particles (inclusions). The results obtained can be extended to other
inhomogeneous media that are described by the same divergent-type elliptical equations [11].

It is known that in dielectrics with isotropic physical properties there is a linear relation between the
local values of the electric displacement D

→
 and the electric field intensity E

→
:

D
→

 = εE
→

 = ε0E
→

 + P
→

 , (1)
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This relation also holds in macroscopic (averaged) form. We note that in Eq. (1) div P
→

 = 0 (the dielectric is
homogeneous) and D

→
 vanishes simultaneously with E

→
. But if the dielectric is inhomogeneous, then P

→
 ≠ 0 also

at E
→

 = 0 and D ≠ 0. It is assumed in [8] that relation (1) D
→

 = εE
→

 in macroscopic form is also applicable to
inhomogeneous materials. Meanwhile, it has been proved theoretically [11] that Eq. (1) in the averaged form
〈D→〉  = 〈ε〉 〈E→〉  holds only for inhomogeneous materials with periodic structures.

Considering the foregoing, we will try to determine the effective value of 〈ε〉 of the inhomogeneous
materials under consideration from the nonaveraged equation (1) by averaging P

→
 and E

→
. We assume that there

is a dispersion medium with the dielectric permeability ε0; inside a limited region of this medium there is a
regular array of foreign solid particles with volumes v2 and the dielectric permeability ε2. The applied exter-
nal electrostatic field of strength E

→
 is assumed to be uniform. From the local equation (1), which holds within

the above-indicated limited region, we determine the magnitude of the dielectric permeability:

〈ε〉 = ε0 + 〈P→ 〉  ⁄ 〈E
→

 〉  , (2)

where the averaging of the quantities from Eq. (2) is carried out according to the Lorenz definition [10]:

〈Ψ 〉 = 
1
v0

  ∫ 
v0

 Ψ (x, y, z) dv (3)

in a physically infinitely small volume v0. We note that the averaged (vector or scalar) parameter 〈Ψ〉  is
independent of the spatial coordinates of the region of averaging and has a period equal to |v0|.

To determine 〈P→〉  and 〈E→〉 , we assume that the number of inclusions within the region of averaging
v0 is n0. The region occupied by the dispersion medium with the dielectric permeability ε1 = ε0 (vacuum) is
v1 = v0 − n0v2. There is no material medium inside v1; therefore here P

→
 = 0. Then, for the averaged polariza-

tion vector determined from (3) we have

〈P→ 〉  = 
1
v0

     ∫ 
v0−v1

  P
→

 dv . (4)

Considering the density of dipole moments inside the inclusions to be constant and denoting it by P
→

2, from
(4) for 〈P→〉  we obtain

〈P→ 〉  = 
1
v0

   ∑ 

i=1

n0

  ∫ 
v2

 P
→

2 dv = f2 P
→

2 ,
(5)

where f2 = n0v2
 ⁄ v0, i is the number of the inclusion. We note that relation (5) is valid for an inhomogeneous

material with an irregular structure for low concentrations f2 << 1 and also for concentrated inhomogeneous
materials with a periodic structure when the foreign particles are polarized identically and uniformly under
the action of a uniform field E

→
0. In such cases, the equivalent dipole moment of a particle p→2 and the polari-

zation vector P
→

2 are interrelated by p→2 = P
→

2v2. Within these inclusions, the following relationship holds:

D
→

2 = ε2E
→

2 = ε0E
→

2 + P
→

2 . (6)

For P
→

2 Eq. (6) yields

P
→

2 = (ε2 − ε0) E
→

2 . (7)
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Now, we will determine 〈E→〉 . Since we consider linear systems, at any point of a limited space the
local intensity E

→
 will be equal to

E
→

 = E
→

0 + E
→

p . (8)

With a uniform external field applied, averaging of Eq. (8) yields for 〈E→〉

〈E→ 〉  = 〈E→0〉  + 〈E→p〉 , (9)

where 〈E→0〉  = E
→

0.
To determine the mean value of the polarization field intensity, we will consider the same limited

region with foreign inclusions inside it and free charges and the sources of the fields D
→

0 and E
→

0 outside.
Within the region,

div D
→

 = 0 ,   div E
→

0 = 0 , (10)

since coupled charges are also sources of the intensity of the electrostatic field E
→

.
In determining E

→
p, we exclude the vector of the displacement D

→
 from Eq. (1) in order to relate the

remaining vectors to their sources. For this, we represent Eq. (1), with account for Eq. (8), in the form

div 

E
→

p + 
1
ε0

 P
→

 

 = 

1
ε0

 div D
→

 − div E
→

0 . (11)

Since the dielectric is inhomogeneous, div P
→

 ≠ 0. Then Eq. (11), with account for Eq. (10), will take the form

div 

E
→

p + 
1
ε0

 P
→

 

 = 0 . (12)

This condition will be satisfied if

E
→

p = − 
1
ε0

 P
→

 , (13)

whence

〈E→p 〉  = − 
1
ε0

 〈P→ 〉  = − 
1
ε0

 f2P
→

2 . (14)

Relation (13) is also valid inside the inclusions, where

E
→

2 − E
→

0 = E
→

p2 = − 
1
ε0

 P
→

2 . (15)

Having substituted the value of P
→

2 from (15) into (14), for the averaged quantity 〈E→p〉  we obtain

〈E→p 〉  = f2E
→

p2 = f2 (E→2 − E
→

0) . (16)

For the averaged intensity 〈E→〉  of (9), with account for Eq. (16), we then obtain

〈E→ 〉  = E
→

0 + f2 (E→2 − E
→

0 ) . (17)
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Determining 〈P→〉  of (5) and 〈E→〉  of (17), from Eq. (2) with account for Eq. (7), for the averaged value
of the dielectric permeability of the inhomogeneous materials considered we finally obtain the relation

〈ε〉 = ε0 + 
f2 (ε2 − ε0) A
1 + f2 (A − 1)

 , (18)

in which A = |E
→

2| ⁄ |E
→

0|.
The proposed definition of (18) derived from the potential-field equation meets the above require-

ments. Thus, the real inhomogeneous medium defined by Eq. (1) and the averaged medium defined by Eq.
(2) are equivalent by virtue of condition (5). And since Eq. (2) is the result of averaging Eq. (1), relation (18)
is free of internal inconsistency, and it gives physically correct results not only for f0 = 0 and f2 = 1 but also
for ν = ε2

 ⁄ ε0 = 0 and ν = ∞. The degree of accuracy of equations derived from Eq. (18) for 〈ε〉  will be
discussed below when inhomogeneous media with inclusions of specific forms are considered.

We give, as an example, the derivation of a formula for calculating the dielectric permeability of an
inhomogeneous material with ellipsoidal (spherical, cylindrical) inclusions. We assume that these inclusions
are oriented identically along the x axis, which is also the direction of the external field E

→
0 = E

→
0x. When the

particles are arranged regularly, they are polarized uniformly. It is known that a uniformly polarized particle
can be represented as equivalent to a dipole. For a particle of ellipsoidal shape the field E

→
ax acting on the

dipole, which differs from the mean one 〈E→0x〉  [10], is equal to

E
→

ax = E
→

0x + 
NxP

→
x

ε0
 . (19)

The mean value of E
→

ax of (19) is

〈E→ax 〉  = 〈E→0x 〉 + 
Nx f2P

→
2x

ε0
 . (20)

Then, for the electric-field intensity inside an inclusion we obtain

E
→

2x = 〈E→ax 〉 + E
→

p2x = E
→

0x + 
Nx f2P

→
2x

ε0
 − 

NxP
→

2x

ε0
 . (21)

Taking into account relation (7), from Eq. (21) we have for E
→

2x

E
→

2x = 
ε0 E

→
0x

ε0 + (ε2 − ε0) (1 − f2) Nx

 . (22)

Substituting (22) into (18), for 〈εx〉  of the inhomogeneous material considered we obtain a new formula:

〈εx〉 = ε0 
ε0 + (ε2 − ε0) (f2 + (1 − f2)

2 Nx)

ε0 + (ε2 − ε0) (1 − f2)
2 Nx

 . (23)

Analysis of this formula shows that it gives physically correct results at the limiting values of the coefficient
of filling. Indeed, 〈εx〉  = ε0 when f2 = 0, whereas 〈εx〉  = ε2 when f2 = 1. Formula (23) also gives correct
results at the limiting values of the parameters of the inhomogeneous-material components. Thus, for ν =
ε2

 ⁄ ε0 = ∞ Eq. (23) yields
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〈εx〉  = ε0 
f2 + (1 − f2)

2 Nx

(1 − f2)
2 Nx

 . (24)

And if in Eq. (24) the concentration is varied from f2 = 0 to f2 = 1, the dielectric permeability varies from
〈εx〉  = ε0 to 〈εx〉  = ∞.

The present authors are unaware of experimental data for an inhomogeneous material with ellipsoidal
inclusions. Therefore, a comparison with experiment will be made for an inhomogeneous material with
spherical inclusions. For this purpose, assuming in Eq. (23) that Nx = 1/3, we obtain a formula for the dielec-
tric permeability of an inhomogeneous dielectric whose inclusions are spherical:

〈ε〉  = ε0 
ε2 + 2ε0 + f2 (ε2 − ε0) (1 + f2)
ε2 + 2ε0 − f2 (ε2 − ε0) (2 − f2)

 . (25)

In the general case, where the dispersion medium is not a vacuum 〈ε0〉 , but a medium with the rela-
tive dielectric permeability ε1, formula (25) takes the form

〈ε〉  = ε1 
ε2 + 2ε1 + f2 (ε2 − ε1) (1 + f2)
ε2 + 2ε1 − f2 (ε2 − ε1) (2 − f2)

 . (26)

Table 1 contains results of calculation by formula (26) for ε1 = 2.228 and ε2 = 4.594 for
0 ≤ f2 ≤ 0.35. Experimental data obtained by Reynolds are taken from [1]. The table presents the deviations of
the theoretical data (multiplied by 104), where the plus sign denotes values higher than the experimental data
and the minus sign denotes ones lower.

TABLE 1. Dielectric Permeability Calculated from Formula (26) and Compared with Existing Formulas

Volume
concentration f2

Experimental
data on ­ε®

Formulas

1 2 3 4 5 6

0.05 2.3170 2.3165 2.3168 2.3149 2.3154 2.3177 2.3170

–5 –2 –21 –16 +7 0

0.10 2.4110 2.4074 2.4085 2.4116 2.4026 2.4124 2.4120

–36 –25 –6 –84 +14 +10

0.15 2.5110 2.5006 2.5032 2.5077 2.4901 2.5124 2.5106

–92 –78 –33 –209 +14 +6

0.20 2.6110 2.5968 2.6009 2.6072 2.5750 2.6183 2.6138

–142 –101 –38 –360 +73 +28

0.25 2.7140 2.6954 2.7017 2.7099 2.6618 2.7306 2.7213

–186 –123 –41 –762 +166 +73

0.30 2.8240 2.7968 2.8055 2.8181 2.7522 2.8496 2.8330

–272 –185 –59 –718 +258 +90

0.35 2.9490 2.9012 2.9124 2.9255 2.8396 2.9766 –

2.9480

–478 –366 –235 –1094 +276 –10

Note. Comparison of formulas: 1) Maxwell−Lorenz; 2) Bruggeman−Hanai; 3) Odelevskii−Kondorskii;
4) Landau−Lifshits; 5) Aramyan’s formula [9]; 6) formula (26) with experimental data obtained by Reynolds.
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It follows from the data given in the table that formula (26) is more accurate, especially at relatively
high concentrations, than the existing Maxwell−Lorenz [3], Odelevskii−Kondorskii [4], Bruggeman−Hanai,
Aramyan [9], and Landau−Lifshits formulas [8].*)

Thus, a method is suggested that allows one, by averaging equations of potential fields, to derive
equations for calculating mean parameters of inhomogeneous materials. The method meets the requirements
imposed on the theory of inhomogeneous media of regular structure.

NOTATION

ε, dielectric permeability of the homogeneous medium; ε0, electric constant; P
→

, electric polarization
vector; f2, relative volume concentration of the inclusions; D

→
2, electric displacement inside an nclusion; E

→
2,

intensity of the field inside an inclusion; E
→

p, polarization field intensity; Nx, coefficient of depolarization of
an ellipsoid along the x axis.
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*)  The present authors will be grateful to those who can send them experimental data to check formulas (23) and
(26).


